Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera.

Identifieur interne : 001847 ( Main/Exploration ); précédent : 001846; suivant : 001848

Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera.

Auteurs : Hui Cao [Oman] ; Cai-Yun Liu ; Chun-Xiang Liu ; Yue-Ling Zhao ; Rui-Rui Xu

Source :

RBID : pubmed:27659322

Descripteurs français

English descriptors

Abstract

In plants, the transcription factor families have been implicated in many important biological processes. These processes include morphogenesis, signal transduction and environmental stress responses. Proteins containing the lateral organ boundaries domain (LBD), which encodes a zinc finger-like domain are only found in plants. This finding indicates that this unique gene family regulates only plant-specific biological processes. LBD genes play crucial roles in the growth and development of plants such as Arabidopsis, Oryza sativa, Zea mays, poplar, apple and tomato. However, relatively little is known about the LBD genes in grape (Vitis vinifera). In this study, we identified 40 LBD genes in the grape genome. A complete overview of the chromosomal locations, phylogenetic relationships, structures and expression profiles of this gene family during development in grape is presented here. Phylogenetic analysis showed that the LBD genes could be divided into classes I and II, together with LBDs from Arabidopsis. We mapped the 40 LBD genes on the grape chromosomes (chr1-chr19) and found that 37 of the predicted grape LBD genes were distributed in different densities across 12 chromosomes. Grape LBDs were found to share a similar intron/exon structure and gene length within the same class. The expression profiles of grape LBD genes at different developmental stages were analysed using microarray data. Results showed that 21 grape LBD genes may be involved in grape developmental processes, including preveraison, veraison and ripening. Finally, we analysed the expression patterns of six LBD genes through quantitative real-time polymerase chain reation analysis. The six LBD genes showed differential expression patterns among the three representative grape tissues, and five of these genes were found to be involved in responses to mannitol, sodium chloride, heat stress and low temperature treatments. To our knowledge, this is the first study to analyse the LBD gene family in grape and provides valuable information for classification and functional investigation of this gene family.

DOI: 10.1007/s12041-016-0660-z
PubMed: 27659322


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera.</title>
<author>
<name sortKey="Cao, Hui" sort="Cao, Hui" uniqKey="Cao H" first="Hui" last="Cao">Hui Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biology and Molecular Biology in University of Shandong, Weifang University, Weifang, Shandong 261061, People's Republic of China.xuruirui2006@163.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>Key Laboratory of Biology and Molecular Biology in University of Shandong, Weifang University, Weifang, Shandong 261061</wicri:regionArea>
<wicri:noRegion>Shandong 261061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Cai Yun" sort="Liu, Cai Yun" uniqKey="Liu C" first="Cai-Yun" last="Liu">Cai-Yun Liu</name>
</author>
<author>
<name sortKey="Liu, Chun Xiang" sort="Liu, Chun Xiang" uniqKey="Liu C" first="Chun-Xiang" last="Liu">Chun-Xiang Liu</name>
</author>
<author>
<name sortKey="Zhao, Yue Ling" sort="Zhao, Yue Ling" uniqKey="Zhao Y" first="Yue-Ling" last="Zhao">Yue-Ling Zhao</name>
</author>
<author>
<name sortKey="Xu, Rui Rui" sort="Xu, Rui Rui" uniqKey="Xu R" first="Rui-Rui" last="Xu">Rui-Rui Xu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27659322</idno>
<idno type="pmid">27659322</idno>
<idno type="doi">10.1007/s12041-016-0660-z</idno>
<idno type="wicri:Area/Main/Corpus">001617</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001617</idno>
<idno type="wicri:Area/Main/Curation">001617</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001617</idno>
<idno type="wicri:Area/Main/Exploration">001617</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera.</title>
<author>
<name sortKey="Cao, Hui" sort="Cao, Hui" uniqKey="Cao H" first="Hui" last="Cao">Hui Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biology and Molecular Biology in University of Shandong, Weifang University, Weifang, Shandong 261061, People's Republic of China.xuruirui2006@163.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>Key Laboratory of Biology and Molecular Biology in University of Shandong, Weifang University, Weifang, Shandong 261061</wicri:regionArea>
<wicri:noRegion>Shandong 261061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Cai Yun" sort="Liu, Cai Yun" uniqKey="Liu C" first="Cai-Yun" last="Liu">Cai-Yun Liu</name>
</author>
<author>
<name sortKey="Liu, Chun Xiang" sort="Liu, Chun Xiang" uniqKey="Liu C" first="Chun-Xiang" last="Liu">Chun-Xiang Liu</name>
</author>
<author>
<name sortKey="Zhao, Yue Ling" sort="Zhao, Yue Ling" uniqKey="Zhao Y" first="Yue-Ling" last="Zhao">Yue-Ling Zhao</name>
</author>
<author>
<name sortKey="Xu, Rui Rui" sort="Xu, Rui Rui" uniqKey="Xu R" first="Rui-Rui" last="Xu">Rui-Rui Xu</name>
</author>
</analytic>
<series>
<title level="j">Journal of genetics</title>
<idno type="eISSN">0973-7731</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Chromosomes, Plant (chemistry)</term>
<term>Cold Temperature (MeSH)</term>
<term>Exons (MeSH)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Ontology (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Hot Temperature (MeSH)</term>
<term>Introns (MeSH)</term>
<term>Mannitol (pharmacology)</term>
<term>Microarray Analysis (MeSH)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Protein Isoforms (genetics)</term>
<term>Sodium Chloride (pharmacology)</term>
<term>Vitis (classification)</term>
<term>Vitis (drug effects)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse sur microréseau (MeSH)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Basse température (MeSH)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Chlorure de sodium (pharmacologie)</term>
<term>Chromosomes de plante (composition chimique)</term>
<term>Exons (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Gene Ontology (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Introns (MeSH)</term>
<term>Isoformes de protéines (génétique)</term>
<term>Mannitol (pharmacologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Température élevée (MeSH)</term>
<term>Vitis (classification)</term>
<term>Vitis (effets des médicaments et des substances chimiques)</term>
<term>Vitis (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Protein Isoforms</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Chromosomes, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Chromosomes de plante</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Isoformes de protéines</term>
<term>Protéines d'Arabidopsis</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chlorure de sodium</term>
<term>Mannitol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Mannitol</term>
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Cold Temperature</term>
<term>Exons</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Ontology</term>
<term>Genome, Plant</term>
<term>Hot Temperature</term>
<term>Introns</term>
<term>Microarray Analysis</term>
<term>Molecular Sequence Annotation</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse sur microréseau</term>
<term>Annotation de séquence moléculaire</term>
<term>Basse température</term>
<term>Cartographie chromosomique</term>
<term>Exons</term>
<term>Famille multigénique</term>
<term>Gene Ontology</term>
<term>Génome végétal</term>
<term>Introns</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Température élevée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In plants, the transcription factor families have been implicated in many important biological processes. These processes include morphogenesis, signal transduction and environmental stress responses. Proteins containing the lateral organ boundaries domain (LBD), which encodes a zinc finger-like domain are only found in plants. This finding indicates that this unique gene family regulates only plant-specific biological processes. LBD genes play crucial roles in the growth and development of plants such as Arabidopsis, Oryza sativa, Zea mays, poplar, apple and tomato. However, relatively little is known about the LBD genes in grape (Vitis vinifera). In this study, we identified 40 LBD genes in the grape genome. A complete overview of the chromosomal locations, phylogenetic relationships, structures and expression profiles of this gene family during development in grape is presented here. Phylogenetic analysis showed that the LBD genes could be divided into classes I and II, together with LBDs from Arabidopsis. We mapped the 40 LBD genes on the grape chromosomes (chr1-chr19) and found that 37 of the predicted grape LBD genes were distributed in different densities across 12 chromosomes. Grape LBDs were found to share a similar intron/exon structure and gene length within the same class. The expression profiles of grape LBD genes at different developmental stages were analysed using microarray data. Results showed that 21 grape LBD genes may be involved in grape developmental processes, including preveraison, veraison and ripening. Finally, we analysed the expression patterns of six LBD genes through quantitative real-time polymerase chain reation analysis. The six LBD genes showed differential expression patterns among the three representative grape tissues, and five of these genes were found to be involved in responses to mannitol, sodium chloride, heat stress and low temperature treatments. To our knowledge, this is the first study to analyse the LBD gene family in grape and provides valuable information for classification and functional investigation of this gene family. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27659322</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">0973-7731</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>95</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2016</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of genetics</Title>
<ISOAbbreviation>J Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera.</ArticleTitle>
<Pagination>
<MedlinePgn>515-26</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>In plants, the transcription factor families have been implicated in many important biological processes. These processes include morphogenesis, signal transduction and environmental stress responses. Proteins containing the lateral organ boundaries domain (LBD), which encodes a zinc finger-like domain are only found in plants. This finding indicates that this unique gene family regulates only plant-specific biological processes. LBD genes play crucial roles in the growth and development of plants such as Arabidopsis, Oryza sativa, Zea mays, poplar, apple and tomato. However, relatively little is known about the LBD genes in grape (Vitis vinifera). In this study, we identified 40 LBD genes in the grape genome. A complete overview of the chromosomal locations, phylogenetic relationships, structures and expression profiles of this gene family during development in grape is presented here. Phylogenetic analysis showed that the LBD genes could be divided into classes I and II, together with LBDs from Arabidopsis. We mapped the 40 LBD genes on the grape chromosomes (chr1-chr19) and found that 37 of the predicted grape LBD genes were distributed in different densities across 12 chromosomes. Grape LBDs were found to share a similar intron/exon structure and gene length within the same class. The expression profiles of grape LBD genes at different developmental stages were analysed using microarray data. Results showed that 21 grape LBD genes may be involved in grape developmental processes, including preveraison, veraison and ripening. Finally, we analysed the expression patterns of six LBD genes through quantitative real-time polymerase chain reation analysis. The six LBD genes showed differential expression patterns among the three representative grape tissues, and five of these genes were found to be involved in responses to mannitol, sodium chloride, heat stress and low temperature treatments. To our knowledge, this is the first study to analyse the LBD gene family in grape and provides valuable information for classification and functional investigation of this gene family. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biology and Molecular Biology in University of Shandong, Weifang University, Weifang, Shandong 261061, People's Republic of China.xuruirui2006@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Cai-Yun</ForeName>
<Initials>CY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Chun-Xiang</ForeName>
<Initials>CX</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Yue-Ling</ForeName>
<Initials>YL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Rui-Rui</ForeName>
<Initials>RR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>India</Country>
<MedlineTA>J Genet</MedlineTA>
<NlmUniqueID>2985113R</NlmUniqueID>
<ISSNLinking>0022-1333</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C464510">LOB protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020033">Protein Isoforms</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3OWL53L36A</RegistryNumber>
<NameOfSubstance UI="D008353">Mannitol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="N">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005091" MajorTopicYN="N">Exons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007438" MajorTopicYN="N">Introns</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008353" MajorTopicYN="N">Mannitol</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046228" MajorTopicYN="N">Microarray Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020033" MajorTopicYN="N">Protein Isoforms</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27659322</ArticleId>
<ArticleId IdType="doi">10.1007/s12041-016-0660-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 27;100(11):6837-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12750468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 Mar 1;171(5):14-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24484953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2003 May;25(3):317-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15639879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(1):221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20797997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 Jun 5;367(1595):1542-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22527397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2014 Aug;33(8):1365-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24792421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 Aug 15;169(12):1221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22591857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 25;436(7054):1119-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16041362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Jan;16(1):47-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20961800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet. 2014 Apr;93(1):79-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24840825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jun;129(2):747-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12068116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2002 Sep;19(3):455-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12557521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e57044</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Dec 12;14(12):24169-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24351809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 15;23(10):1307-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Sep;24(9):3489-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22948079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Aug;82(6):575-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23585213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jul;43(1):47-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15960615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2006 Apr;39(1):248-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16290186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):118-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17259263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2012 Jul;22(7):1169-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22508267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Oct;19(10):3037-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17933900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Nov;65(20):5889-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25135520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1387-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15829602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Apr 22;14:103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24755338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(2):632-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24803293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2007 Aug;29(8):1023-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D302-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Feb;17(2):444-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2007 May;71(5):1269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24288371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Mar;57(4):559-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Aug 27;14:219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25158790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Oct;236(4):1227-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):354-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18997115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Mar;18(3):574-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(19):6663-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17913740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 May;237(5):1367-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23397191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Nov;21(11):3567-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 May;43(5):467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12040093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Nov;22(11):3662-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Dec 16;15:1116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25512249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Jun 01;4:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15171794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1998 Oct;23(10):403-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9810230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Jan;73(2):212-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22974309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Sep;160(1):407-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22786889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2013 Feb;8(2):e22979</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23299420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):2886-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16243907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CSH Protoc. 2007 Jul 01;2007:pdb.top17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21357135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W597-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22661580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2010 Dec;37(8):3973-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20306306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Oman</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Liu, Cai Yun" sort="Liu, Cai Yun" uniqKey="Liu C" first="Cai-Yun" last="Liu">Cai-Yun Liu</name>
<name sortKey="Liu, Chun Xiang" sort="Liu, Chun Xiang" uniqKey="Liu C" first="Chun-Xiang" last="Liu">Chun-Xiang Liu</name>
<name sortKey="Xu, Rui Rui" sort="Xu, Rui Rui" uniqKey="Xu R" first="Rui-Rui" last="Xu">Rui-Rui Xu</name>
<name sortKey="Zhao, Yue Ling" sort="Zhao, Yue Ling" uniqKey="Zhao Y" first="Yue-Ling" last="Zhao">Yue-Ling Zhao</name>
</noCountry>
<country name="Oman">
<noRegion>
<name sortKey="Cao, Hui" sort="Cao, Hui" uniqKey="Cao H" first="Hui" last="Cao">Hui Cao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001847 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001847 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27659322
   |texte=   Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27659322" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020